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Abstract 

Abstract 

The manufacturing industry is embarking on a progressive level of maturity concerning digitalization. 

Maintenance is a fundamental segment where competitive advantage can be acquired, through the 

implementation of quality and data-driven techniques. In manufacturing and especially in the present 

use case, quality standards are of major importance as they configure a level of difficulty to the global 

production process. Manufacturers have available a more advanced technological environment, looking 

at data as an insight generation tool. Currently, the machines are not prepared to offer an integrated 

perspective of the system, thus being challenging the identification of the root causes for the majority of 

the failures. The present thesis reports the work developed to address the requirements stated above. 

Equipment data acquires in this work, a unique interest while it is manipulated to develop an intelligent 

predictive model adapted to the industrial context. With this aim, it is proposed a novel method for 

integrating equipment data suppressing the need for a large number of variables and facing 

uncertainties in the system data flow. In addition, a framework for visualizing patterns and equipment 

interdependency is developed. The current study provides the manufacturer and the respective 

maintenance team an effective tool that can be integrated into the existing system providing insights 

and increasing the conformity with quality standards and production goals. 
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Resumo 

Resumo 

A indústria de fabrico está a embarcar num nível avançado de maturidade no que diz respeito à sua 

digitalização. A Manutenção é um dos segmentos fundamentais para a aquisição de vantagem 

competitiva, através da implementação de técnicas orientadas pela qualidade e pela informação. Neste 

tipo de indústria, e especialmente no presente caso de estudo, os padrões de qualidade são parte 

importante e conferem um incremento no nível de dificuldade do processo global de produção. Os 

fabricantes têm à sua disposição um ambiente tecnológico mais avançado, considerando os dados 

como uma fonte de criação de conhecimento. No presente, as máquinas não estão preparadas para 

oferecer uma visão integrada do sistema, tornando-se desafiador a identificação dos motivos base que 

levam à maioria das sua falhas. A presente dissertação reporta o trabalho desenvolvido para endereçar 

os requisitos acima mencionados. Os dados de equipamentos adquirem neste trabalho um interesse 

único pela sua utilização no desenvolvimento de um modelo preditivo inteligente adaptado ao ambiente 

industrial. Com este objetivo, é proposto um método original para a integração dos dados de 

equipamentos, suprimindo a necessidade por um grande número de variáveis e enfrentando incertezas 

no fluxo de dados do sistema. Em adição, foi desenvolvida uma estrutura de visualização de padrões 

e interdependência entre equipamentos. Este estudo disponibiliza ao fabricante e à equipa de 

manutenção uma ferramenta eficaz que pode ser integrada nos sistemas existentes, proporcionando 

conhecimento e ampliando a conformidade com os padrões de qualidade e os objetivos de produção. 
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Chapter 1 

Introduction 

1 Introduction 

Previous to laying out the motivation and problem description, this chapter gives an overview of the 

current State of the Art concerning different approaches which can be adapted to the problem, bringing 

out the innovative aspects presented on the thesis. At the end of the chapter, the structure of the main 

report is also outlined. 

 

1.1 Motivation 

The industrial environment is changing and digital technology is the leading actor in what is considered 

as the emerging paradigm - Industry 4.0. Attached to this concept is the idealization of smart 

manufacturing which is supported by the integration of “smart technologies” with standard manufacturing 

devices as sensors and other equipment. One may affirm that the manufacturing is by itself adjusting to 

human needs and also to the constraints of its supply chain. This fourth revolution can be materialized 

by attending to cyber-physical systems – a merge between the physical and the digital grades. An 

example of this systems can be found in the preventive maintenance area, where the condition of a 

physical equipment and all the associated parameters are reflected in a Digital Twin [1]. 
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A Digital Twin can be seen as a mirror of a physical equipment being composed by the combination of 

the equipment itself, the virtual components and the cyber-physical data that connects the two grades. 

The introduction of Digital Twin has occurred initially in aeronautics and astronautics fields for failure 

prediction, being present within the maintenance context. This concept has attached a large amount of 

data from production status to operational information and the manipulation of this information provides 

a wiser equipment maintenance as well as improved process design [2]. 

The combination of artificial intelligence, big data, streaming analytics and machine learning, provides 

a powerful tool for the manufacturing industry environment and supports the basic concepts embraced 

in the current thesis. 

The maturity of technology dictates the short number of documents regarding the application of 

predictive maintenance to the industrial context, the contribution of this research holds the following 

alignment of achievements: 

• A tool for combining asymmetric data sets; 

• An apparatus for visualizing patterns and interdependency of machine behaviour; 

• An approach to overcome unknown variables; 

• A data-driven machine learning classifier adapted to the manufacturing industry. 

1.2 Topic Overview 

The diversification of challenges faced by industries is leading maintenance job to constantly grow to a 

more mature state, taking advantage of technological evolution to redefine the strategies followed by 

maintenance teams.  

Corrective maintenance is far known as the “only fault repair” approach and it is on the basis of the 

maintenance ideology. Despite being the earliest maintenance mode, this strategy it’s deeply common 

in industries with reduced complexity and conservative culture. Taking into account the majority of 

industries, preventive maintenance is the endorsed method to address maintenance needs, performing 

a regular inspection at well-defined periods of time in order to prevent deterioration of equipment and 

possible loss of product quality generated by faulty components [3].   

Bearing in mind a lack of data regarding the system operation and the absence of intelligence with the 

capability to process this information, it’s acceptable to adopt the previous strategies. However, several 

companies are realising the true cost of maintenance and the potential they can achieve with a more 

adapted strategy. For this reason, predictive maintenance is the main hypothesis on this thesis, 

representing the concept that allows high reliability and enhances economic efficiency [4]. 
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Predictive maintenance itself is not a replacement for the two methods previous presented, it’s essential 

to have a combination between “run to failure” approach and preventive actions. In this blend of 

strategies, predictive procedures can complement the results by reducing the number of unexpected 

failures and identifying periods to apply specific maintenance tasks [5]. This late concept is usually 

adopted as a tool for maintenance management aiming to prevent unscheduled downtime, as a plant 

optimization tool helping the definition of production procedures and parameters and also as a reliability 

improvement tool identifying the deviations in the operative specifications triggering operator actions 

preventing the potential failure or loss of quality in the production [6].  

To better understand maintenance methodologies, it’s important to have a clear knowledge of the 

behavioural progression expected in an equipment lifetime. Figure 1 represents a conceptual evolution 

of failure rate minding the equipment usage, displaying the probability of failure in the three stages of 

the system. The described interpretation is on the basis of maintenance tasks definition and it’s widely 

used to plan both preventive and predictive procedures.  

 

Figure 1 | “Bathtub Curve” - Hypothetical Asset Failure Rate versus Time [7]. 

Industries can address the previously stated challenges by implementing several monitoring 

technologies like thermography, vibration monitoring, tribology and ultrasonic analysis or by conducting 

failure analysis through parameter and historical data processing. A technology-based approach often 

combines more than one monitoring mechanism, increasing complexity in data processing due to the 

integration of information from different sources [6].  

On the other hand, the technic referred in second place can efficiently adapt to the existing systems, 

using a principle settled on the equipment behaviour defined as Condition-Based Maintenance. CBM 

takes into account the progression on the equipment status and deviations from standard parameters 

to identify potential problems and unexpected failures. This can be a powerful tool when used along with 

historical failure data, assuming a relation between the conditions that cause an event in the past and 

the replication of the same conditions in the present. Correlations between equipment usage and 

component deterioration are well-known examples of potential failure motivators that are feasible to 

apply CBM theory [8]. 

 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwja6fiwlfDbAhVBnxQKHUflCKkQjRx6BAgBEAU&url=https://www.presenso.com/single-post/2017/11/23/will-iiot-predictive-maintenance-kill-statistical-modelling-mtbf/&psig=AOvVaw0S5BL3QBQbNYb9wTsKSPtT&ust=1530062402363324
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Usually, both intrusive and non-intrusive methods are used to complement each other, achieving 

superior results by combining them with maintenance and operational data to build a device capable of 

estimate equipment lifetime and plan maintenance unexpected activities [9].   

Predictive maintenance models are typically developed by considering machine learning techniques as 

data mining and machine learning classification. This last task can be divided into two groups: 

Supervised Learning and Unsupervised Learning. In the first type of problems, it is present an outcome 

variable to guide the learning process while in unsupervised learning only the features are observed 

having no measurements of the output variables. In the maintenance environment, the aim of supervised 

learning is usually to predict a value or a label of one variable such us time to failure or the end of life of 

a component, and it can be achieved by knowing the values of other variables (production, sensors data 

and other information). If the variables being predicted are not a value but a category, then the problem 

is described as classification [10]. 

Bearing in mind the previous statements, it’s essential to understand some of the classifiers that are 

often used in similar problems. Ensemble methods were used in the current thesis to develop a machine 

learning model for classification. These methods are learning algorithms that, from a set of classifiers, 

perform a weighted vote on their classification and then estimate a class to the new entries. In a simple 

manner, the ensemble classification combines the prediction of several estimators in a given algorithm, 

thus improving the robustness of a single classifier [11].  

Contained in the category of ensemble methods are the forests of randomized trees. In the case of this 

methodology, a set of classifiers (decision trees) is created by introducing randomness in the classifier 

construction as detailed in the following illustration. 

 

𝐷 =  [
𝑋𝐴1 𝑋𝐵1 ⋯ 𝑦1

⋮ ⋮ ⋮ ⋮
𝑋𝐴𝑁 𝑋𝐵𝑁 ⋯ 𝑦𝑁

]                   

𝑇1 =  [

𝑋𝐴12 𝑋𝐵12 ⋯ 𝑦12

𝑋𝐴34 𝑋𝐵34 ⋮ 𝑦34

⋮ ⋮ ⋮ ⋮
𝑋𝐴72 𝑋𝐵72 ⋯ 𝑦72

]  𝑇2 = [

𝑋𝐴24 𝑋𝐵24 ⋯ 𝑦24

𝑋𝐴38 𝑋𝐵38 ⋮ 𝑦38

⋮ ⋮ ⋮ ⋮
𝑋𝐴47 𝑋𝐵47 ⋯ 𝑦47

]     𝑇3 = [

𝑋𝐴15 𝑋𝐵15 ⋯ 𝑦15

𝑋𝐴54 𝑋𝐵54 ⋮ 𝑦54

⋮ ⋮ ⋮ ⋮
𝑋𝐴62 𝑋𝐵62 ⋯ 𝑦62

]        …      

 

Figure 2 | Representation of forests of randomized trees in machine learning classification. 

 

In Figure 2, 𝐷 is the learning data set fed to the algorithm, while 𝑇1,  𝑇2 ,  𝑇3 are the randomly generated 

decision trees. 𝑋 and 𝑦 are, respectively, the features and the associated output class. In its learning 

stage, the algorithm adjusts its parameters to learn from the learning data set to classify the output class 

𝑦. 
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On this thesis, predictive maintenance converges with condition base monitoring, applying an intelligent 

system which can identify patterns and predict potential failures based on progression of the equipment 

status, operating conditions and maintenance team experience. This approach can be adapted to 

systems without a substantial volume of information and it’s also qualified for the initial stage of 

equipment’s lifetime in which the number of failures is higher, usually characterized by the difficulty in 

identifying potential problems in the quality control inspections.  

Therefore, using technics that are non-destructive and adaptable to the installed system, it’s possible to 

take actions in order to bypass the potential failure of an equipment improving one of the most important 

performance indicators, the Overall Equipment Efficiency [12]. 

1.3 Thesis Outline 

Previous to laying out a detailed description of the system in section 2.1, it is contextualized the 

production process addressed in this thesis. Chapter 2 then provides a full characterization of machine 

data utilized throughout this work (section 2.2). The last section of this chapter finally presents the 

problem constraints, introducing the main objectives endorsed. 

The following chapter minds the manipulation of data considering the intervention of experienced 

personnel when interpreting the information (section 3.1). Then, it presents one of the main approaches 

of this work by referring to the concept of Sequence Windows (section 3.2.1), the utilization of Apriori 

algorithm (section 3.2.2) and finally the development of a visualization tool for presenting patterns in 

machine events – the Support Matrix. 

The development of the intelligent model is detailed in chapter 4. It begins by defining the objectives of 

the machine learning algorithm and it’s then followed by the construction of an evaluation system in 

section 4.2, allowing to understand the purpose of the model and its results. Previous to describing the 

modelling of the classifier (section 4.4) it is detailed one of the most essential tasks in this type of 

problems – the data preparation. In this section, a description of the technologies used is followed by 

the features construction process and the environment creation. 

Chapter 5 delivers the results of the previous engagements divided into two perspectives: The Data 

Science and the Operational. While the first one describes typical indicators of the performance of 

machine learning algorithms, the other contextualizes the results from the point of view of the 

manufacturer.  

The results of the approach taken are then discussed in the conclusions chapter (Chapter 6) as well as 

guidelines to further continuation of the presented work. 
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Chapter 2 

Industrial Environment 

2 Industrial Environment 

In the current chapter, a detailed description of the system concerned in this study is presented 

considering three main topics. In section 2.1 is engaged the characterization of the industrial system 

addressed in the present thesis examining closely its environment along with upstream and downstream 

processes. A full perspective of the available data is then delivered in section 2.2, referring the data 

extracted from the machines, the contribution of the insights provided by experienced personnel and a 

detailed analysis on machine failures, relevant to understand the problem attended later in the chapter. 

Section 2.3 is focused on exploring the thematic of operational downtime motivated by failures occurred 

in the target area as long as the definition of the related circumstances. 
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2.1 System Description 

The current thesis comprises a study of an industrial process for the production of a solid light weighted 

product subjected to strictly regulated quality standards.  

Given the complexity of the process and all its variables, it was considered data of the two machines 

with the largest impact on overall downtime. From now on they will be referred as Maker and Packer, 

respectively the machine that constructs the product by assembling all of its components and the one 

that groups the individual products, also referred as Units, in a pack. 

Bearing in mind the mentioned processual area, it is important to contextualize the upstream and 

downstream environments as they interact directly and indirectly. As Figure 3 suggests, Maker is fed by 

product’s main component and other secondary constituents. The first element, β, is primarily processed 

and experiences several treatment steps in the initial stage of the global process, conceiving from the 

raw material a highly standardized substance with well-defined characteristics. However, particles that 

compose this component have variable size, weight and properties. Taking as an example, two particles 

that have experienced equal conditions of processual treatment can vary in ductility, density, and shape. 

This is mainly due to feedstock traits and confers on the product a blend of properties that gives its 

unique characteristics. Nonetheless, some particles may disturb the stationary functionality of the 

process if they present attributes that conduct to flow blockages, uneven distribution of weight and loss 

of material during product transportation. On the other hand, secondary constituents are less likely to 

retain properties that could interfere with machine stability even though existing slight irregularities 

common to every raw material. 

Upstream, is located a sequential set of unitary operations designed to group the constructed packs in 

larger volumes concluding the global production process. In this case, the interaction on the system is 

mainly direct as a stoppage on upstream machines can represent an interruption on system flow. 

To prevent this direct relation caused by upstream stops, there are buffers placed between the unitary 

operations, which accumulate a defined amount of product from one machine to the later. Reasonably, 

in the system Maker-Packer, the flow is not direct and accounts with a large buffer that can sustain about 

15 minutes of continuous packer consumption. Considering that both machines are programmed to 

produce 14000 units per minute, the Buffer is estimated to hold 200000 units at average capacity. In the 

Buffer, the individual units have some freedom of movement that could enable the loss of material and 

moisture, minor deformation and accentuation of previous assembling flaws, hence interfering with the 

proper functioning of the system. 
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Figure 3 | Process diagram of target section compromising both machines addressed in the study 

(Maker and Packer) and the intermediate Buffer. Representation of intake areas. 

 

As previously mentioned, Maker is responsible for assembling all of the constituents in order to produce 

the individual unit. With this aim, Maker can be subdivided into three stages:  

M-A. Admission and distribution of feedstock; 

M-B. Construction of preliminary product; 

M-C. Formation of the final product (Product A) and the introduction of finishing steps crucial 

to grant desired properties.  

After the individual unit goes through the buffer it’s then forwarded to Packer intake zone where it’s 

reorganized along with other units to fit the package geometry. Later, the group of units is directed to 

the second stage of the machine designed to build the pack. Accordingly, it is possible to define two 

stages for this operation: 

P-A. Admission and reorganization of a set of units; 

P-B. Construction of the pack (Product B) and coupling of secondary constituents.  

Machines composing the System are current top performers and account with a robust rejecting system 

based on real-time measurement of well-defined parameters and assessment of product quality. In the 

case of product’s properties doesn’t meet quality standards, it will be rejected. This exclusion of non-

compliant items could be not immediate for the reason that exists proper areas to make material 

discharge. Therefore, assuming that a produced good doesn’t fulfill the necessary requirements, the 

machine will consider this product location and determines the moment when it passes through the 

discharge section in order to prevent more severe situations downstream caused by defective products. 

It is also essential to bear in mind that machines are programmed to stop if the number of rejected 

pieces overcome a defined threshold that could vary dependently on the equipment.  
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Despite the large number of reject motives in Packer, the first machine accounts only with a few 

parameters that are measured with high precision and stated below:  

• Weight; 

• Tightness; 

• Weight distribution; 

• Ventilation; 

• Suction resistance. 

Deviations on these parameters could result in a defective Product A, potentially inducing malfunctions 

in downstream unitary operations as it will be later addressed in section.2.3. 

2.2 Data Characterization 

As previously stated, data from two machines is the ground base for the current thesis. For this purpose, 

it was considered as sample a historical time span of 4 months that represents 100 days of production. 

Data were retrieved from a framework that integrates sensors from all connected equipment and 

provides aggregated operational information.  

 

2.2.1 Machine Events Data 

For both machines, the same data structure was adopted. A set of 30 variables describe the 14911 and 

49550 rows of Maker and Packer, respectively. The fact of the packaging machine having three times 

more entries will be addressed in section 2.3.3. 

Bearing in mind the confidential responsibilities of the information involved in the study, any material 

that could lead to the manufacturer was omitted. It is nonetheless necessary to characterize the 

variables adopted in the current thesis.  

• Start Time and End Time: Considering the data structure that will be attended later in this 

section, each row defines a time period from Start Time to End Time; 

• Is Stop: Flag that indicates the moment when the machine stopped; 

• Category: Broad description that defines machine status; 

• Sub-Category: Detailed description that defines machine status. For events with high duration 

this field can be manually introduced by the operator; 

• Equipment Causing Stop: This variable indicates what equipment is responsible for the 

machine stop. Possibilities are the machine itself and upstream or downstream equipment; 

• Stop Reason: Characterization of the actual motive that induced the machine to stop. The 

reason provided may not be the root cause of the event; 
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• Average Speed: Taking into account the time period, it presents an average speed in Units per 

minute; 

• Total Product Produced: Total amount of product made by the machine irrespective of its 

condition; 

• Rejected Production: Number of Units rejected given their condition; 

• Good Production: Result of the difference between Total Product Produced and Rejected 

Production; 

 

Without treatment, the information used from both machines has to be analysed as two independent 

datasets as a result of an asymmetrical temporal domain. To confirm this declaration, it can be 

considered the following conjectures that are a consequence of the way data was generated from the 

system and are valid for both machines: 

 

• Machine events data are a continuous data set grouped in time periods by machine status; 

• Each row represents an alteration of machine status from the precedent row, thus a new event; 

• Data is arranged in descending order of time; 

• No major maintenance operations were performed on the machines; 

• No manipulation has altered the data, thus providing a plain exportation of measured variables. 

 

Addressing the clarification of first and second statements, further demonstration is essential. Taking as 

an example the starting of production, one row should be generated and it’s expected to demonstrate 

the status Starting appended to the Category Running. Then, assuming correct functionality in the initial 

stage, the next row on top of the previous would make a reference to Normal Run status. Also inserted 

in Running Category is the following stage – the Ramp-down. Whenever the machine identifies a 

deviation in the normal behaviour of the production line, it initializes the slowdown process until it finally 

stops. Examples of the presented deviations are, among other possibilities, lack of feedstock or the 

number of rejected Units superior to a defined threshold.  

These three status identified in the machines represent a typical sequence in the data set. Starting 

always follows a stop or the begging of a production, and it is proceeded by Normal run after an average 

time of 30 seconds. Notwithstanding Ramp-down status being essential to complete the stop procedure, 

it isn’t necessarily true that it will occur. More severe circumstances usually determine an immediate 

stop of the machine, independently on the current status (Starting or Normal run). 
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The integration of the two data sets constitutes the first challenge engaged in this thesis as represented 

in the following illustration:  

 

Figure 4 | Transposition of an operational example into the data set structure. 

 

Chronologically, it’s not possible to integrate information from both machines into one data set containing 

all the variables mentioned above. Bearing in mind that each row in the data set characterizes the 

machine status in a given time span, it’s correct to assume that each coloured block represents an entry. 

Therefore, as Figure 4 suggests, even considering that Maker and Packer start their production 

simultaneously, the periods of one machine does not match necessarily the time windows of the other. 

From now on, the presented blocks will be referred as Events as they are the reflection on the data of 

the events occurred during the operational time. 

The presented evidence makes unattainable the calculation of any variables associated with the 

equipment that precedes the target area. The Buffer is fed by Maker and consumed by Packer, 

declaration that can be defined by the relation below: 

𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒 (𝑈𝑛𝑖𝑡𝑠) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑖𝑧𝑒 + 𝑀𝑎𝑘𝑒𝑟 𝐺𝑜𝑜𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑎𝑐𝑘𝑒𝑟 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑     (1) 

In the closing stage of each production, Buffer is cleaned out in order to prevent changes in product 

properties motivated by long exposition to external conditions, such as temperature and humidity. For 

this reason, the Initial Size of the Buffer is zero at the beginning of each production, summing up the 

previous equation to the difference between the Units that Maker evaluate as acceptable and every Unit 

that Packer utilizes to compose the packs, independently on their conditions. However, given the 

asymmetry of both data sets, the estimations resulted as not adequate to the problem as they didn’t 

provide a viable appreciation on the Buffer size that could define the amount of time needed for a Unit 

to go from Maker to Packer. It is also essential to take into account that the Average Speed is determined 

considering only the final and initial speeds and for that reason, information on instant production could 

not be calculated from this variable.
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2.2.2 Human Expertise 

A crucial part of the present thesis concerns the expert knowledge of the people whose daily 

responsibilities comprise direct contact with the system in study. Operators experience is essential to 

understand raw data from the machine as they have the expertise to transpose the information recorded 

into concrete day-to-day situations. Evolution in manufacturing with human-centered process 

automation defined its role in the industrial environment as a decision maker in planning and controlling, 

aided by technology [13]. 

In an initial stage, insights from operators, shift supervisors and maintenance personnel provided three 

valuable resources included in: 

• Problem Definition (section 2.3): Recognition of important variables and relations within or 

between machines, allowing to focus on a target area.  

• Aggregation of events (section 3.1): Aggregation of failure status that represents the same 

effect. Development of machine’s digital twin.  

• Data Integration (section 3.2): Interpret machine behaviors from data. Validation, identification 

of anomalies and exclusion of entries. 

2.2.3 System Stops Analysis 

Notwithstanding the process is the same for different products, the system behaviour is slightly different 

depending on product constituents and their characteristics. Therefore, the study was centralized in the 

product that presents higher production, necessarily having more historical data to work on. In addition, 

its production has the lowest MTBF, a simple indicator that takes into account the total uptime and 

divides it by the number of stops. For this variety, the value of this indicator referred to the historical 

period was 19.0 and 6.73 minutes respectively for Maker and Packer. In proportion, the making machine 

holds an MTBF that is almost three times superior, declaration that promptly justifies the differences 

existing in the number of rows of each data set. For the same operational time, lower MTBF implies a 

larger number of stops, thus representing higher variation in machine status that consequently 

generates more rows. However, only 80% of Packer stops are attributed by the operational system to 

Packer responsibility, while the remaining percentage is associated to Maker and Downstream 

machines. This monitoring system integrates all machines and takes into account the stops caused by 

shortage of feedstock and buffer limitations. As an example, if the making machine stops for a duration 

such that causes the Buffer between the two machines in study to reach a defined minimum threshold, 

for security reasons, Packer will also stop, thus imputing this stop to Maker’s responsibility. Assuming 

that any of the subsequent equipment fails, Packer will continue to produce until it finally fulfils 

downstream buffer capacity, necessarily forcing the machine to cease production. In this case, the 

operational system accredits the Equipment Causing Stop to Downstream Machines.  

Bearing in mind the described concept of Equipment Causing Stop (ECS), it was conducted a study on 

machine failures.  
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As previously mentioned, Packer’s location in the process is highly sensitive to uniformities in feedstock 

properties. Given that this feedstock is a result of Maker’s Good Production, it is fundamental to describe 

the behaviour of the making machine. With this aim, two dimensions were considered: 

• Average rejected units by stop: This indicator depicts the number of rejected units that a stop 

by a given Stop Reason rejects in average, providing an estimation on the extent of the damage 

motivated by the failure. 

• Average duration by stop: It defines in average the amount of time spent by the operators to 

fix the failure and restore the operation. Can also be considered as an indication of how frequent 

this failure happens, considering that a given common type of stop is more efficiently handled 

than an occasional stop, which requires time evaluating peculiar variables. 

The indicators above were determined by equations (2) and (3), respectively. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑈𝑛𝑖𝑡𝑠 𝑏𝑦 𝑆𝑡𝑜𝑝 𝑜𝑓 𝑆𝑡𝑜𝑝 𝑅𝑒𝑎𝑠𝑜𝑛 𝑋 (𝑈𝑛𝑖𝑡𝑠/𝑠𝑡𝑜𝑝) =
∑ 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑈𝑛𝑖𝑡𝑠𝑥=𝑛

𝑥=0

𝑛
                        (2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑆𝑡𝑜𝑝 𝑜𝑓 𝑆𝑡𝑜𝑝 𝑅𝑒𝑎𝑠𝑜𝑛 𝑋 (𝑈𝑛𝑖𝑡𝑠/𝑠𝑡𝑜𝑝) =
∑ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑥=𝑛

𝑥=0

𝑛
                                               (3) 

 

Considering the universe of stops in the making machine and their relative position, it was expressed in 

the diagram below three areas related to the stages identified in Figure 3. In brief, it’s appropriate to 

declare that M-C is the section that presents a more complex environment as it has a high number of 

rejected Units in each stop and includes a vast window of average duration overcoming the challenges 

imposed by the failures. On the other hand, stoppages inducted in M-B are promptly solved as they are 

highly frequent and don’t require a complicated intervention, often being a common daily operation. 

 

 

Figure 5 | Characterization of Maker stops given their location. M-C (Red on top); M-B (Yellow on 

bottom left); M-A (Green on bottom right). 
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Bearing in mind the previous diagram and the matter addressed on this thesis, a set of eleven Maker 

Stop Reasons is presented from the carried study of all failures. This set is a result of the approach 

addressed later in section (3.2.3) and is part of the correlation settled between the two machines, 

established by the principle that a defective Unit produced by the first can later disturb the normal 

operation of the following equipment. In the representation below, the Stop Reasons were identified with 

a code due to the sensibility of the information given and coloured based on their relative location in the 

machine. 

 

 

 

 

Figure 6 | Bubble representation of Maker stops analysis. The bubble size is given by the frequency of 

the stop (number of occurrences in the historical data). M-A (green, bottom); M-B (yellow palette, 

bottom); M-C (red palette, top); External Component (grey, bottom right). 

 

 

It is important to refer that the codification used to decharacterize machine stops is the same as the 

presented in this document in order to guarantee the integrity of the analysis taken. On the other hand, 

the following table is devoted to describing each stop providing information on the location, metrics used 

in the representation and potential causes and consequences. 

 

 

 

 



 

16 

Table 1 | Detailed characterization of maker stops. 

Code Avg. Duration by stop Avg. rejected units by stop Location 

-1 269 20 M-A 

-2 158 201 M-C 

-11 426 57 M-B (External) 

xte) -26 171 13 M-B 

-49 182 32 M-B 

-62 269 11 M-B 

-83 130 157 M-C 

-84 244 166 M-C 

-144 111 229 M-C 

-146 171 40 M-B 

-147 124 217 M-C 

 

In the presented study, information from occasional events with excessive impact on the overall 

indicators was excluded. In this category are included the Breakdown and Long process stop records 

as they don’t provide a substantial picture on the daily operation and typically induce inaccurate 

conclusions.  

A similar approach was also conducted to examine Packer stops, however, as it will be addressed in 

the coming section, the conclusions are not applicable to the focus of this thesis.  

2.3 Problem Definition 

2.3.1 Identification of the target area 

Packer is accountable for the global process major downtime. The behaviour is fairly justified if we 

consider this machine as the concentration of a variety of flaws, minor defects and irregular features of 

feedstock units. On the first stage of the global process, compromising the treatment of the main 

component, these peculiarities are easily imperceptible as they reside in a large amount of material. 

Transposing from the mentioned stage to the studied system, the items involved are about 106 times 

lighter and require high precision handling, thus amplifying the impact of the mentioned variations on 

the line operation. On the other hand, Packer intake zone represents a bottleneck both literal and 

figurative to the production process. 
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Bearing in mind that this section is preceded by the buffer, which proportion has already been specified, 

it’s important to refer that the products are grouped into two trays with a few dozens of units per each, 

being Packer necessarily a high-performance machine to carry the production rate. In order to guarantee 

the line’s maximum uptime, every unit produced by maker must have standardized properties within the 

boundaries of the quality parameters. For the above reasons, Maker and Packer compose a complex 

system with multiple interactions and variables that require continuous study, suitable as the focus of 

this thesis. 

 

 

 

Figure 7 | Process diagram of target section embedded with stop analysis based on relative position. 

P-A1 is marked in red as the target area. 

 

The preceding diagram supports the distribution of failures in the two machines granting an intuitive 

perspective of most distressed areas. Notwithstanding M-B and M-C accounting with a large number of 

stops, Packer’s location P-A1 accounts with more than 50% of all system failures. This section presents 

a peculiar set of characteristics related to machine stoppages as they have a short average duration of 

67 seconds, meaning that an operator is able to identify and quickly mitigate the disturbance. In the 

industrial environment, when an obstacle is easily managed, it is typically comprehended as a daily 

reality underestimating the impact that can have in the production and in the activity of the operator. 

Nonetheless, given its high number of occurrences, these particular failures have an extensive 

repercussion on the global downtime - close to 2 weeks for each year. In addition, as previously 

mentioned, one stop can generate a stage of Ramp-down and necessarily a Starting stage. The two 

phases of the operation are moments of low production rate and perform a total of 9 days without taking 

advantage of the capability of the machine in its target speed. 
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Aiming to fully understand what variables can induce a stop in P-A1 is foremost necessary to define the 

Stop Reasons involved. As described above, this section portrays a bottleneck, where hundreds of Units 

are forwarded to fit in a space for small dozens in a high-speed performance machine. The indicated 

circumstances along with uniformity of feedstock Units compose the ideal environment for one particular 

type of complication, the blockages. In this case, it is possible to define a possible situation that can 

represent the vicissitudes found in the target area and provide meaningful information giving context to 

the declarations: 

A defective Unit produced in Maker inverts its position while approaching the target area causing the 

clogging of one of the channels that lead the Units to Packer’s intake zone. The clogging restrains the 

possibility of fulfilling all the required space in the pack and forces the machine to stop and reject the 

incomplete production. The stoppage can be identified by ten different Stop Reasons, however, later in 

section 3.2 will be addressed the method adopted to merge similar Stop Reasons based on operators’ 

insights. 

 

2.3.2 Perception of circumstances 

According to the above line of reasoning, P-A1 is an evident choice for the target area giving that: 

 

• Failures in that section are frequent; 

• Blockage is mostly motivated by uniformities in feedstock Units; 

• Operators have a clear knowledge of the actions they should take to restore the normal 

operation; 

• Total downtime is heavily affected by PA-1 blockages. 

 

On the other hand, there are still some variables that should be considered as a barrier to getting a 

definite picture of the system. The following line-up provides a description of the main challenges 

addressed considering the focused area: 

 

• Machines’ data sets are asymmetric in time;   

• Lack of information on sensors data or other variables; 

• Unworkability on buffer size estimations; 

• High rate of failures near P-A1; 

• Defective maker products can also perturbate other sections. 
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Chapter 3 

Data Pre-processing 

3 Data Pre-processing 

Data extracted from machines and correspondent equipment is often subject to high variance in the 

information, composed by an abundance of noise and imperceptible elements. This chapter addresses 

the extraction of relevant information from both data sets. Concerning further machine learning 

application, it is not a good practice to bring all the available information, on the opposite, it is crucial to 

understand and separate significant data in order to improve quality and reliability in the solution. Section 

3.1 introduces that process by aggregating events based on their similarity, avoiding ramification of the 

outputs. Afterward, the conditions are set to begin the process of extraction of the relevant variables, 

following a mechanism endorsed in the current thesis. The conception of a Support Matrix allows the 

identification of patterns in the behaviour of both machines and provides a set of Maker events essential 

to the operationalization of the classification model, the input events. This mechanism is assembled 

using statistical techniques relying on the construction of Lookup Windows and adaptation of Apriori 

algorithm as completely described in section 3.2. 



 

20 

3.1 Aggregation of events 

Bearing in mind the knowledge of the operators and maintenance personnel regarding the system itself, 

it is possible to delineate some ground base assumptions for the analysis of machine data. In the first 

place, it should be considered that the Stop Reasons are registered by the Operational Framework and 

are a result of the integration of the information from multiple devices that detects or measures physical 

and mechanical properties.  

These devices, can detect the presence of unexpected components, prevent machine damage and loss 

of product quality. Generally, the Stop Reason recorded by the Operational Framework is directly related 

to the device that flagged the situation and this raises two important points:  

 

1. The Stop Reason identified by the system may not be the root cause that motivated the 

stoppage; 

2. More than one Stop Reason can be found to be related to the same stop. 

 

Considering the second point, the operators’ perspective was crucial to identify which Stop Reasons 

could be linked to the same cause, thus aggregating the data based on similarity, managing the noise 

induced by multiple variables in the later analysis. Note that the reason provided by the system is the 

same status that appears in the machine monitor for the operator on his daily activity. 

As previously mentioned, the study is focused on stops that are motivated by blockages in Packer’s 

intake zone. However, along with the above line of reasoning and considering the second statement, 

these clogs can be identified by more than one Stop Reason. The target area is therefore comparable 

to a sequential set of nets design to permeate the passage of Units without defects. Examples of this 

situations are physical deformations and uniformities such as lack of components or their incorrect 

assembling.  

On the other hand, each figurative net is composed by a series of connected devices arranged to identify 

any alarming behaviour having the possibility to induce a machine stoppage. The following alignment 

describes the consecutive progress of nets considered in P-A1, taking into account that the codes used 

to map the Stop Reasons adopt the same logic than those referred earlier, employing in this case 

positive identificatory for Packer stops.  
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Table 2 | List of Stop Reasons recognized in the target area. 

Code Stop Reason 

121 

 

Hopper malfunction 

80 Operator visually identifies an improper situation in the hopper 

12 Faulty vibration of the equipment 

7 Unit not detected in destination channel 

4 Machine turret covered, Left 

18 Machine turret covered, Right 

6 Missing component β in track 1  

17 Missing component β in track 2  

9 Missing component α in track 1  

13 Missing component α in track 2  

 

The packaging machine comprises two parallel production tracks acting as twins and designed for the 

synchronized manufacturing of a pair of Packs.  

Blockages in the target area are from now on described by code 1000 also referred as the target stop. 

Since any of the Stop Reasons labelled in Table 2 was classified by operators as a potential identifier 

of the blockage, the codes were combined in one, in furtherance of the analysis performed on this thesis. 

3.2 Data Integration 

When data integration is referred, it is usually associated with the combination of data from more than 

one source aiming to provide a full perspective of the domains, facilitating the processing and 

interpretation of the information. In this particular case, the strategy of integration of both data sets plays 

a central role in the development of the solution.  

Engaging the consequences of blockages identified as target stops and considering their occurrence 

is in the intake zone of the machine, it is fundamental to examine preceding variables as potential 

motivators. The integration of two asymmetric data sets is the primary challenge addressed in this thesis 

and it is settled on three consecutive concepts: 

 

1. Sequence Windows; 

2. Apriori Algorithm; 

3. Support Matrix. 
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The mechanism developed on this thesis provides an innovative approach to reproduce insights from 

machine data adapted to overcome conditions of lack of information on independent systems. 

So far it has been described the system and related variables, the available information and also the 

problem itself and its constraint. From now on, the approach exploited to address this thematic will be 

the focal point. 

3.2.1 Sequence Windows 

Pattern Discovery is embedded in the definition of Data Mining, as it is the detection of similar structures 

on large data sets. The largest is the data set, more likely it is of having a high content of data distortion 

and uninteresting patterns, becoming impractical to apply simple statistics on data and consequently 

paving the way to data science through machine learning and other advanced computer techniques. 

Notwithstanding, deciding whether the patterns found are or not relevant and pertinent to the 

circumstances, should take into account the operational context and knowledge from experienced 

people whose function is directly associated with the subject [14].     

Aiming to find similar patterns in the available data sets, modifications had to be made on the schema 

and structure of each one to fit them together. The first and more immediate adjustment is certainly 

directed to the limitation of asymmetry in time of both data sets. As previously mentioned, information 

of each machine is independent and it is a result of the evolution in the operational status. Accordingly, 

Maker has events in different time spans than Packer, what makes inconceivable the aggregation of two 

dimensions: Start-time and End-time. To conveniently associate this information only the first one was 

considered. However, this assumption originates a particular disadvantage: without a time span, the 

association of variables is not possible. For instance, only considering the Start-time the declaration “At 

09:00:29 was produced 4000 Units of which 500 were rejected”, is no longer coherent because in this 

case the concept of instantaneous production it’s not achievable. On the other hand, it is valid to assume 

for example that the machine stopped at 09:21:23 with the Stop Reason ID = -2. This limiting opportunity 

makes it attainable to identify patterns in the sequence of Maker events and even in the interdependency 

between equipment that comprise the system. Bearing in mind the former perspective, data from the 

two data sets was aggregated and organized in descendant order of Start-time, being the latest event 

the first row of the compiled data set.  

Further modifications minded to addressing one evidence common in the machine information which 

has a direct relation with its operation. Whenever the connected devices identify an abnormal behaviour, 

the stopping process begins and it differs from failure to failure. This process starts with the deceleration 

followed by a sequence of stages until it reaches the final programmed condition. For the purpose of 

this analysis, only the first stopping stage was considered valid, representing the actual Start-time of the 

event. In addition, and along with best practices considered in Data Mining, the resulting data set still 

contained non-vital information to pattern identification. Therefore, only the stop status was considered 

excluding all Running events from both machines. This resulted in a two-column data set (Start-time 

and Stop Reason ID) which comprises 15260 rows.  
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That said, it is appropriate to assume that there is a sequential set of events with different Stop Reasons 

forming a chronological sequence that illustrates the behaviour of both machines regarding their stops. 

 

 

Figure 8 | Illustration of the application of Sequence Windows technique. The colours represent the 

relative location of the events based on the set previously applied. 

 

Intending to identify patterns in the sequence of events, the methodology described by Vilalta et al [15] 

references a similar approach as the one illustrated by Figure 8. The target stops define the beginning 

of the Lookup Window, a well-defined time span proposed to determine what events occurred from the 

Start-time of the target event until the edge of the window. In the developed concept, the proposed 

methodology was adapted to engage the thematic of equipment interdependency.  

As depicted in the representation above, the objective was to set a window with a fixed size immediately 

before a target stop, with the ability to identify the preceding Maker events during the given time span. 

This purpose was accomplished by developing a computational algorithm proceeding in three steps: 

 

1. Importation of the combined data set; 

2. Iterate in each target stop creating the window and returning the events contained in the time 

span (Loop Strategy); 

3. Exportation of a list of maker events. Each window originated a row of occurred events. 

 

The generated list contains crucial information to identify patterns minding the dependency of the two 

machines, as it expresses every event that happened in Maker in a well-defined period preceding Packer 

target stops, composing the input for the next topic. 
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3.2.2 Apriori Algorithm  

Finding patterns in a processed data set can benefit from statistical techniques, which can be 

implemented and improved with the use of algorithms. Therefore, the Apriori algorithm was considered 

suitable to the problem. This method is widely adopted to perform temporal data mining and is known 

for identifying association rules between frequent events and also providing statistical indicators as the 

support value [16].  

Support is directly related to the frequency that two events occur in the data set and can be expressed 

by the following relationship: 

𝑠 (𝐴 =>  𝐵) =  𝑃 (𝐴𝐵) =  
𝑁(𝐴𝐵)

|𝐷|
                                                                 (4) 

Where 𝑁(𝐴𝐵) represents the number of times that 𝐴 and 𝐵 are simultaneously present in a transaction 

being |𝐷| the universe of all transactions present in the data set [17].  

To better understand the fundaments of Apriori it is essential to recognize the following concepts: 

• Transaction: Set of events associated with a time. Each row in the input data set is a transaction; 

• Item: Base unit of the transaction. Each event is an item; 

• Support (s): Defined as the percentage of transactions that contain a given item; 

• Rule: The rule −1 => 1000 with 𝒔 = 10% refers that the event with ID -1 occurs before the 

target event in 10% of the transactions presented in the data set.  

 

For instance, considering the illustration depicted in Figure 8, four rules and respective supports can be 

defined, one for each Stop Reason: 

• 𝑠 (−1 =>  1000) =   
1

3
≈ 33% 

• 𝑠 (−2 =>  1000) =   
2

3
≈ 67% 

• 𝑠 (−26 =>  1000) =   
2

3
≈ 67% 

• 𝑠 (−83 =>  1000) =   
1

3
≈ 33% 

Considering that the input data set was originated from the application of the method previously 

described, it can become undeniable that all rules must have in common one item, the ID 1000, 

nevertheless, this is a misconception. Apriori algorithm is prepared to identify rules between all items, 

which transposed to the studied case means that it is also optimized to analyse patterns in Maker events. 

As an example, the rule (−1 =>  −2) could be as well an output of this technique, providing interesting 

information on Maker behaviour. Despite the fact that this information could assist to perceive 

correlations between failures in the making machine, it could not be considered as fundamental to 

address the focus of the current thesis, therefore, further work will be mentioned accordingly. 
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3.2.3 Support Matrix 

Differently from the exemplification presented above, the data set accounts with a large number of items, 

consequently meaning a broad amount of possibilities. Considering the 56 Stop Reason that can induce 

Maker to a stop, there is the same number of rules that can be defined with the employment of the 

Apriori algorithm.  

Nonetheless, it is important to be aware that Maker and Packer are separate machines and often present 

failures that are not related to each other, knowing moreover that the only way that Packer can induce 

a stop in Maker is if the Buffer’s capacity is in a state that requires the first one to cease production. 

Therefore, it becomes evident that not all the derived rules are relevant to the analysis and it is essential 

to consider two meaningful aspects:  

 

• A threshold of minimum support, s, should be defined with the purpose of obtaining only rules 

that are sufficiently supported by this statistical indicator. 

• Insights from experienced personnel play also an important role deciphering each rule with an 

effective support. This action provides fundament to the rule itself, complementing the output of 

the algorithm with the transcription from the operational situation. 

 

The Support Matrix is the combination of the two concepts elucidated in the present chapter (Sequence 

Windows and Apriori Algorithm) and it represents one of the innovative aspects conceived in the 

formulation of the current thesis. It is designed to address the adversities stated earlier on the integration 

of two asymmetric large data sets and the analysis of the interdependence existing between equipment. 

Depicted in Figure 9, the matrix is composed by two axes (size of Lookup Window on the top and ID of 

Maker Event on the left side) and it provides an intuitive perspective of the rules between a pair of items, 

the target event and the Maker Event. The stronger the correlation, highest is the support and darker 

the colour set on the respective field. The interpretation is done by considering the concept of Lookup 

Window detailed earlier and it follows the logic exemplified by the following outcomes: 

 

• The Stop Reason ID -2 occurs in 30% of the transactions generated with a Lookup Window of 

16 minutes; 

• Support associated with Stop Reason ID -1 only becomes significant when the Lookup Window 

is greater than or equal to 17 minutes; 

• This set of ten types of Maker Events presents the failures that can occur in Maker and have a 

significant impact in Packer’s functionality given variable time spans from 1 to 20 minutes  
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Figure 9 | Support Matrix resultant of the mechanism developed for the integration of both data sets. 

 

Note that minimum threshold was set to a support of 5%, meaning that the set of Maker Events 

comprises only the ones with support greater than this threshold in at least one of the Lookup Windows. 

Support Matrix is, for this reason, a powerful tool in the identification of patterns and correlations 

between events. One of its main advantages is the versatility shown dealing with incompatible data sets, 

only requiring one common variable related to time. It provides insightful information on equipment 

behaviour, creating relations among events, pointing out the statistical strength of the relation.  

In the current hypothesis, Support Matrix has another decisive purpose. Its output, the set of Maker 

Events with a potential association with Packer’s target stops, plays an essential role in the following 

section, which comprises the conception of the intelligent model developed to engage the problem. The 

performance of the model is highly influenced by the process of variables and features selection, 

important to build faster and more cost-effective predictors facilitating data understanding and reducing 

training times. One of the earliest stages in the construction of a predictive model is the selection of the 

input variables. In this stage it’s important to visualize what data is unnecessary and has the potential 

to induce noise, selecting only a subset of features based on relevance and considering their 

redundancy [18]. 

In the present section, it has been described an approach to address the selection of relevant Maker 

Events with the purpose of using this intel to feed the predictive model. From now on, this set of Stop 

Reason IDs will be referred to as input events, as they are the ground base to the selection of related 

features and the development of the solution. 
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Chapter 4 

Model Development 

 

4 Model Development 

The present document approaches the construction of a machine learning algorithm, referred also as 

the model, aiming to address the problem of blockage in the intake zone of the packaging machine. The 

development of the model followed the usual practices of machine learning referenced in the literature. 

It is initialized by the purpose endorsed by the model (section 4.1), followed by the development of an 

evaluation system carried to fit the results in the operational context (section 4.2). One of the most 

important steps minding the development of a machine learning model is the preparation of the data 

that will serve as an input for the algorithm. Section 4.3 approaches the technologies used and the 

transformations required to process the data set. Later, the modelling of the classifier is addressed by 

taking into account the needs in the manufacturing industry environment. In machine learning 

techniques, the main goal is to retrieve knowledge from data, being fundamental to understand how the 

algorithm deals with its feedstock. This is the major challenge when implementing machine learning 

models and is addressed in the current chapter as a way to generate insight on the interdependency of 

both machines, Maker and Packer. 
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4.1 Projected Purpose 

From operations to process, the application of machine learning systems in the manufacturing industry 

has been a reality. The integration of this intelligent systems capacitates the manufacturer to understand 

patterns and generate insights from large data sets [19]. As previously described, supervised learning 

is related to the prediction of a target function. This form of machine learning is often used in the 

manufacturing environment as the majority of problems can be divided into two categories: 

• Predicting a Quantity: Automated techniques are used to estimate a production quantity by 

correlating a multiplicity of variables and information of sensors and other devices. 

• Predicting a Category: Classification of categories address the most common manufacturing 

issues where the estimator predicts a defined class label based on the values of the related 

variables. 

Also frequent when referring to the manufacturing data source is the noisy data resultant for example 

from limitations of measuring instruments and also human error typing logs into a computer. This 

circumstance, if not resolved, has the ability to limit the achievable accuracy of the mechanisms 

development, therefore, one distinctive attribute that should be considered when evaluating the model, 

is its robustness [20]. 

Developing a machine learning model should invariably begin by the definition of the goals and 

capabilities that are expected from it. In the current thesis, the mechanism must be capable of 

addressing a set of situations widely known in the manufacturing environment: 

• Handle noisy data comprising outliers; 

• Process large data sets from more than one source;  

• Generate perceptible insights; 

• Provide a positive impact on production and its daily activity; 

• Possibility of scaling the model to ensure near real-time processing. 

Bearing in mind the analysis taken on the previous chapter and the points stated above, it becomes 

evident that the problem minded in the current thesis can effectively be handled by applying an estimator 

for Predicting a Category, also referred as a classifier. Accordingly, the projected purpose will be the 

central thematic of the following line of reasoning. 

The target stops are a constant reality in the daily operation of the studied line. Nonetheless, in these 

particular failures, the job of searching for the defective location and resetting the normal behaviour of 

the packaging machine is done in an effective way. As the operators are familiarized with these 

blockages, it only takes about one minute to solve them. On the other hand, the impact that the target 

stops have on overall downtime makes inevitable to attend them. It’s not only the production that is 

affected by the number of times these blockages occur, but also the operators’ performance should be 

considered. Looking from the operators’ point of view, the blockages occur randomly and with high 

frequency, interrupting any task that is being performed. Therefore, the model developed must consider 

this perspective and also taking into account the set of situations mentioned above.  
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Bearing this in mind, it becomes evident that the goal of the machine learning model was to provide an 

estimation of when a target stop would occur. Transposing from the operation to the model, it means 

that the conceived classifier has the ability to predict an event based on the information from its 

variables. In the operation, the same trained classifier should be capable of process real-time data and 

provide a warning when a blockage is predicted. 

4.2 Evaluation System 

After laying out the main goals of the model, it’s essential to define the evaluation grid, that can answer 

to one of the most significant questions: How it should be measured the performance of the model? 

This is not a straight answer and usually has two perspectives that must be considered: the operational 

and the mathematical. The first one accounts with metrics such us, the impact of the model in the 

production and the complexity involved in scaling up the algorithm. From the data science point of view, 

there are frequent metrics that perform a complete evaluation of the machine learning algorithms. Both 

perspectives are essential and could not remain without each other, a situation that certainly implicates 

an inaccurate assessment. 

Present in the operational context, it were defined the following metrics: 

• Impact on MTBF: This indicator is widely used in the manufacturing industry, acting as an 

appropriate way of quantitatively measuring the model performance;  

• Scalability: The algorithms utilized must allow the possibility of being scaled up to fit the needs 

of the operation;   

• Degree of operationalization: The machine learning mechanism should be transposable to the 

production environment. 

Prior to defining the attributes for evaluating the model based on the second point of view, it is important 

to briefly introduce the quadrant that sums up the results of the model, also known as the confusion 

matrix. 

 

Figure 10 | Diagram of the confusion matrix used to display machine learning outputs. 



 

30 

From the above illustration, a classifier can have the following outputs: 

• True Positive (TP): Positive prediction that is in fact positive; 

• False Positive (FP): Positive prediction that is actually negative; 

• True Negative (TN): Negative prediction that is in fact negative; 

• False Negative (FN): Negative prediction that is actually positive; 

 

Concerning the data science perspective and taking into consideration the confusion matrix illustrated 

in Figure 10, the selected metrics are detailed below: 

• Sensitivity or True Positive Rate (TPR):  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                      (5) 

Measures the proportion of actual positives that are correctly predicted from the total 

amount of positive instances. 

 

• Precision:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                (6) 

Measures the proportion of positive predictions that are actually correct. 

 

• Accuracy: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                    (7) 

 Generally, indicates the fraction of right predictions, both positive and negative. 

 

• F1 Score (F1): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                               (8) 

Represents the harmonic mean of precision and sensitivity. 

 

• False Discovery Rate (FDR): 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 = 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                                              (9) 

 Measures the proportion of positive predictions (discoveries) that are actually incorrect. 

 

This last indicator is extensively adopted when the classification of positives predictions must reflect a 

high yield of actual positives. Besides expressing the probability of error, FDR is frequently associated 

with other costs indicators, as minimizing this metric means building a cost-effective model [21].  

 

 



 

31 

For instance, in medical diagnosis, FDR should be one of the most important measures used to evaluate 

the model’s performance. In this environment, it is only possible to rely on the algorithms if their 

classifications represent a lower FDR, otherwise, one may tell the patient he presents a positive result 

for a particular disease though not being actually a positive.  

In the manufacturing industry, most of the decisions involve time and cost consuming tasks, therefore, 

FDR expresses an effective metric to evaluate the performance of the model, serving both perspectives: 

operational and mathematical. Naturally, one may affirm that every problem has its peculiarities and the 

response given must address different goals. For this reason and considering that it’s not feasible to 

develop a model that can outstand all existing metrics, it’s essential to define the optimization strategy 

that will be followed when training the model. 

Taking into consideration the context this study is inserted, a balance between TPR and FDR was the 

aim defined for the model construction. Transposing to operational conditions, it is important that the 

algorithm displays the capacity for estimating a satisfactory amount of target stops, providing minimum 

false discoveries, known in manufacturing ambience as “false alarms”.  

4.3 Data Preparation 

The preparation of the data fed to the classifier plays a central role in the model development. Later of 

being processed, data should be restructured to fit the input framework. The following alignment 

describes the path of data from the moment of its processing until the one that it is used to train, test 

and validate the algorithm.  

4.3.1 Adopted Technologies 

Machine learning can be sustained in several technologies being the most important aspects of the 

construction of the learning strategy and the selection of the input variable. However, some frameworks 

allow a wider range of possibilities and simplify these two processes. On the current thesis, the utilization 

of Microsoft Office Excel and Python were the main partners on the model development. 

The first one is a powerful tool that allows the visualization of the data, facilitating processes such as 

the identification of outliers. On the other hand, Python accounts with a wide range of machine learning 

algorithms, what makes this programming language the preferred to engage in the data science 

thematic. Taking into consideration that the classifier should be effectively evaluated, Scikit-learn was 

the toolbox chosen to perform and test the machine learning algorithms [22]. 
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4.3.2 Feedstock Data 

Given the described steps for the development of the model, emerges another fundamental problem 

concerning the selection of variables. However, there isn’t a systematic way of performing this process 

that responds to every situation, thus requiring a customized perception of the relevant data [23]. 

Considering the data sets of both making and packaging machines, one can define the following 

alignment of attributes describing each Maker failure: 

• Average Speed; 

• Total Product Produced; 

• Rejected Production; 

• Good Production. 

 

Two rules that are on the basis of features selection affirms that the considered variables must not be 

redundant and should have meaning to the classification. Constructing a classifier is highly influenced 

by the set of features adopted, and should aim to realize the highest generalization performance and 

fastest classification [24].  This final variable, “Good Production”, is a result of the difference between 

the “Total Product Produced” and the “Rejected Production” and it was not considered for the reason 

stated above. 

Given that it is a common issue in machine learning, the situation of dealing with a large number of 

features tends to be the most important part of the development. Notwithstanding the reduced number 

of features in this particular case, there was a high amount of possible Stop Reasons that could be 

related. For this reason, a special attention was directed to minimize the number of Maker failures 

accountable for the input data. 

As detailed in Section 3.2, a Support Matrix was developed considering patterns in the behaviour of 

both machines and their interaction. This apparatus provided an output essential for the definition of 

feedstock data, as it declares the Maker Stop Reasons that are potentially relevant to the current study. 

Each one of these Stop Reasons is able to be described by the previous enumerated features as well 

as other derived variables that will be later described in the current section. 

The algorithms employed in machine learning practices can be described as a computerized learner 

capable of mapping input variables (X) of a given function (f) to an output class (y) as represented by 

the relation below: 

𝑦 = 𝑓(𝑋)                                                                             (10) 

 

A typical classification problem usually requires the data to be labelled in a binary form. Considering the 

present use case, the classifier should correctly identify a Packer blockage in the target area from all 

set of events, therefore data labelling was performed by attributing 0 or 1 to the set of events (y). 
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Each occurrence is described by more than one attribute (X) as detailed in the following table: 

 

Table 3 | Structure exemplification of the feedstock data. 

Label Attribute A Attribute B Attribute C 

𝟎 (𝒚𝟏) 

 

𝑋𝐴1 𝑋𝐵1 𝑋𝐶1 

𝟏 (𝒚𝟐) 𝑋𝐴2 𝑋𝐵2 𝑋𝐶2 

 

Table 3 provides a representation of the input data set for the machine learning model, divided into two 

groups: Labelled Events (y) and correspondent Attributes (X). In simple terms, this model is designed 

for correctly classifying y, given the related attributes X. The events were binarized considering that the 

target stops are the positive results and the universe of all other stops are the null perspective, as it 

follows: 

 

Table 4 | Identification of labelled events. 

Stop Reason ID Label Universe 

𝒚 = 𝟏𝟎𝟎𝟎 

 

𝟏 Target stops 

𝒚 > 𝟎 ∧ 𝒚 ≠ 𝟏𝟎𝟎𝟎 𝟎 Remaining Packer stops 

 

Taking into account the information stated in Table 4, one may say the defined structure only lacks 

attributes for relating the labelled events. These attributes were defined by considering that Labelled 

Events are a result of the past performance of Maker for the reason that, as the current hypothesis 

suggests, Packer’s behaviour is directly influenced by the production of the making machine. Bearing 

the previous statement in mind and the possible attributes earlier described, the associated variables 

were determined by the utilization of Excel and will be further defined. 

Support Matrix served two purposes: avoid noise and redundancy in the inputted data and providing 

possibilities for generating variables from the attributes already stated. For instance, consider the 

following declarations: 

 

1. “Maker rejected 1500 Units in the last ten minutes”; 

2. “Maker rejected 500 Units in the last ten minutes due to Stop Reason ID -2”.  
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Both statements are considered valid and offer vital information to be consumed by the model. For this 

reason, two additional variables were generated for each Maker Stop Reason resultant from the Support 

Matrix: the number of failures motivated by a Stop Reason and the respective number of Units rejected. 

On the other hand, one may affirm that general information on both machines is as well important and 

should be taken into account. Therefore, it was considered the following alignment of general variables, 

given their solid rationalization: 

 

• Packer – Average speed before failure: The machine is designed to operate at the constant 

velocity of 14000 Units per minute. However, given the number of stops in the packaging 

machine, there are stages of acceleration and deacceleration which signify a great portion of 

the total operating time. Different stops can also be characterized by different rates of production 

meaning that this input is valid, as the target stop has its own speed profile, essential to the 

estimator. 

• Packer – Total Product Produced before failure: In a similar way as the attribute stated 

above, the Total Product Produced indicates how the respective production was performing by 

the moment that the failure occurred. Considering the Packer’s Labelled Events, two situations 

can happen: a blockage in the target area or any other failure. In this hypothesis, the first 

situation is likely to be motivated by defective Units produced by the earlier equipment, 

therefore, there is a higher chance of having a larger number of Packs produced than with other 

types of stops. For these later items to occur, it is likely that Packer is not performing well, thus 

accounting with a lower production number. 

• Packer – Rejected Production before failure: Another general metric that can express if the 

machine is or not performing as efficiently as the normal operation, is the sum of the rejected 

number of Units in the packaging machine. This attribute is also justified due to one reason 

stated earlier: the equipment rejects defective Units until a defined threshold, behind this 

threshold it causes the machine to stop. 

• Maker – Total number of rejected Units: Given the location of the Buffer and the level of 

uncertainty this equipment originates, defining general variables based on Maker’s behaviour 

could turn out to be not effective. For this reason, only the number of rejected cigarettes was 

considered accurate for the feedstock data. 

 

Note that the last attribute listed is similar to the one mentioned before: the number of Units rejected by 

each Maker Stop Reason. Notwithstanding, the first one provides a general perspective while the last 

feature is specific for the related Maker failures given by the Support Matrix. This approach ensures, 

that the relation between Maker and Packer is not independent of the behaviour of the earlier equipment. 
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4.3.3 Time Dimensionality  

One may affirm that in the machine learning environment, the universe of possibilities to address a 

particular problem is quite significant. However, in the majority of the situations, a fundamental unit is 

lapsed – the time. Without exception, in every engineering problem, time is a reality that cannot be 

suppressed and often defines the designed approach to engage it. In some machine learning 

applications, time is becoming an important variable as well, from medical to cyber-security applications 

time should be incorporated in the modelling process in order to provide results that are close to reality 

and to the problem constraints. From the beginning to the end, this variable is an absolute entity, present 

in the concept of the Sequence Windows, the construction of the Support Matrix and as further 

addressed in this chapter, in the model development.  

The variables presented in the previous chapter doesn’t have meaning without the dimension of time as 

it wouldn’t matter much if we provide to the algorithm the value of those variables in the instant of the 

stop. For this reason, notwithstanding the importance of selecting the variables, is as well essential to 

reshaping the data to fit in the context of the problem. A constant of time is therefore necessary when 

defining the variables inputted to the algorithm. This process was iterative, starting with the selection of 

a fixed time windows and ending with the conception of Lookup Tiers.  

At average capacity, Buffer holds 15 minutes of production, meaning that, when leaving Maker, a Unit 

takes 15 minutes to get to the target area. For this reason, the first approach taken was to consider a 

fixed window of 20 minutes starting in the instant of a Packer stop to calculate the attributes. For 

example, consider a given failure in packaging machine with label 𝒚 = 0 occurring exactly at 16:00:00. 

Using the fixed window, the number of failures in Maker motivated by a Stop Reason and the respective 

number of Units rejected will be determined from 15:40:00 until the stop time in the packaging machine. 

This defined time span was settled in order to ensure that if a given failure occurs in Maker and it 

produces defective Units, at most, in the 20 minutes later the characteristics should be contained in the 

variable of the Packer stop.  

The results of this approach weren’t satisfactory due to the variability of situations that can occur in a 20 

minutes window and can affect the performance of the algorithm, as the following examples: 

• Packer ceases production and the defective Unit takes longer than 20 minutes to go through 

the Buffer: In this case, the calculated attributes miss the relevant parameters and provides the 

algorithm an erroneous description of the events; 

• Maker ceases production and the defective Unit takes a shorter time than 20 minutes to go 

through the Buffer: The packaging machine, as it was presented, accounts with a considerably 

low MTBF (approximately 6.7 minutes) meaning that, in the defined time span, can occur three 

different Packer stops. Therefore, the behaviour of the making machine will be present in the 

attributes of each of these stops, considered as output variables (y) to the algorithm. 
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The current hypothesis has a complex challenge due to the lack of information regarding the Buffer. 

This equipment performs the transportation of Units and its length is variable depending on the rate of 

production of both machines. Accordingly, it is not accurate to define a fixed time window and determine 

the attributes taking that into account. The proposed approach to address this situation is based on the 

estimation of the Buffer size, aiming to provide a closer contact to the operational reality. 

 

 

Figure 11 | Characterization of the system and respective equipment related to their capacity, 

production rate and efficiency. 

 

As previously stated, the exact determination of Buffer size results in non-coherent results due to the 

asymmetry in time of the information of both machines present in the study. However, instead of 

estimating this value based on the difference between the Packer consumption rate and Maker Good 

Production rate, another approach was developed considering the downtime of the equipment. In the 

case of Maker presenting a higher downtime than the consecutive machine, the Buffer will drain out 

faster as Packer is consuming more Units than what are being produced by the subsequent machine. 

Relying on the earlier declaration, the logic of Lookup Tier was built based on the estimation of the 

Buffer’s size. 

For each output variable (y), in a time span of 20 minutes preceding that stop, the downtime of both 

machines was determined. Then, the following relation was applied: 

 

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑃𝑎𝑐𝑘𝑒𝑟 −  𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑀𝑎𝑘𝑒𝑟                                                          (11) 

 

As it is evident, one may declare that higher the calculated difference, the larger is the Buffer size and, 

therefore, the longer it will take for a Unit to course through this equipment. For this purpose, it was 

created the concept of Lookup Tier – a define time span that starts in 𝑡 + 𝑥𝑠 minutes from the Packer 

stop (𝑡) and ends in 𝑡 + 𝑥𝑒.   
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Bearing this in mind, the conception of tiers of analysis is described by Table 5.  

 

Table 5 | Lookup Tiers resultant from the estimation of the size of the Buffer. 

Tier 
Downtime Difference (minutes) Lookup Tier Boundaries (minutes) 

Minimum Maximum  Start (𝑥𝑠) End (𝑥𝑒) 

1 < -30 - 30 

 

0 5 

2 -30 -20 5 10 

3 -20 -10 10 15 

4 -10 10 15 20 

5 10 20 20 30 

6 20 30 30 45 

7 30 > 30 45 60 

 

The presented tiers are a result of several iterations taken to find the best estimation of this unknown 

variable. Considering the information stated in the table above, the Lookup Tiers were defined with time 

spans of 5 to 15 minutes, getting larger as the difference rises, ensuring a wider window in the tiers with 

greater uncertainty, the ones where the Buffer’s size is substantial. The conception of the Lookup Tiers 

is depicted by Figure 12. 

 

 

Figure 12 | Conception of Lookup Tiers based on the determination of Downtime Difference for each 

output variable. 
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As illustrated in the previous figure, for every output variable (y) a Tier is determined given the calculated 

Downtime Difference – expression (11). In each tier, there is a computation of variables taking into 

account the respective time span. For instance, at 14:21:12 an output variable labelled “0” occurred. 

The difference in the downtime of packaging and making machines was such that the respective Tier is 

“2”. Therefore, all the variables regarding Maker’s behavior will be determined from 14:11:12 until 

14:16:12. By conceiving this perspective the time that a defective Unit spent in its path through the Buffer 

is estimated, aiming to eliminate the influence of this equipment. 

On the other hand, the attributes associated with Packer’s performance were computed considering the 

moment that immediately preceded the stop represented by the output variable. The calculations 

implemented to each variable will be further detailed in the current chapter. 

 

Table 6 | Subset of the input data and auxiliary columns for calculating the Lookup Tiers. 

 Auxiliary  General Attributes Maker Stops Attributes  

Label 
Aux         

X 

Aux         

Y 

Aux         

Z 

Attribute 

A 

Attribute 

B 

Attribute 

C 

Attribute 

D 

Attribute 

E 

Attribute 

F 

… 

𝟎 

 

8 15 20 4000 1920 40 169 0 0 … 

𝟏 -14 10 15 10500 880 0 709 2 48 … 

⁞ 4 15 20 933 1920 60 95 1 15 … 

 

Table 6 provides an example of the feedstock data with three additional auxiliary columns to produce 

the attributes. The label on the left represents the set of output variables (y) described by the general 

attributes as well as the specific attributes for the Stop Reasons identifying the Maker stops that proceed 

on the right. As previously stated, the algorithm takes a set of variables as an input and adjusts a function 

to best classify the outputs. For this reason, it is important to ensure that these variables are the more 

relevant as possible. The columns that contain this set of attributes are decoded in the following 

alignment as well as the auxiliary components: 

 

1. Aux X – Downtime Difference (minutes):  

Represented by expression (11), the downtime difference assists in the definition of the Lookup 

Tiers for each of the output variables. 

2. Aux Y – Minimum Boundary(minutes): 

Determined by the respective tier, it defines the start of the time span. 

3. Aux Z – Maximum Boundary (minutes): 

Determined by the respective tier, it defines the end of the time span. 
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4. Attribute A – Average speed (Units/minute):  

Refers to the average speed of the packaging machine at the moment before the failure. It was 

considered that whenever the machines initialise the status of Ramp-down, a problem in the 

machine has already been identified, therefore, the average speed selected concerns the speed 

in the status of Normal Run.  

5. Attribute B – Total Product Produced (Units):  

Indication of the total number of Units consumed by Packer from the moment of the previous 

failure until the stop identified by the respective output variable. 

6. Attribute C – Rejected Production (Units):  

Indication of the total number of rejected Units in the packaging machine from the moment of 

the previous failure until the stop identified by the respective output variable. 

7. Attribute D – Total number of rejected units (Units):  

Represents the number of Units rejected by Maker in the period comprised by the Lookup Tier 

associated with the failure of the packing machine. 

8. Attribute E – Number of occurrences by Maker stop: 

Counts the number of occurrences of a given Maker Stop Reason in the period comprised by 

the Lookup Tier associated with the failure of the packing machine. This attribute is calculated 

separately for each Maker Stop Reason identified by the Support Matrix. The total number of 

variables is the same as the total number of Stop Reasons (11). 
 

9. Attribute F – Rejected production by Maker stop (Units): 

Represents the number of Units rejected by Maker in the period comprised by the Lookup Tier 

associated with the failure in the packing machine. This attribute is calculated separately for 

each Maker Stop Reason identified by the Support Matrix. The total number of variables is the 

same as the total number of Stop Reasons (11). 

 

Two considerations were also applied to the feedstock data aiming to provide to the algorithm a closer 

perspective of the line’s operation. In the first place, it should be considered that a defective Unit could 

motivate a Packer stop in the target area. However, if the irregularity is not very substantial it is possible 

that it causes another type of blockage downstream of the mentioned area. These blockages were 

aggregated by the manufacturer following the same line of reason as the one used to combine all Stop 

Reasons associated with the target stop. Bearing this in mind, one should consider that Maker is not 

likely to produce only one defective Unit at a time, but a batch of variable size, ones showing more 

intensive imperfections than others. For this reason, it is also essential to provide information on this 

blockages as there could be a potential relation with the target stops. In the case of these Stop 

Reasons, two variables were generated per each, conserving the same logic of attributes E and F, 

excluding in the case the logic of the Lookup Tier, giving that they refer to the packaging machine. 
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In addition, another action should be performed in the input data regarding the value of the MTBF of the 

second equipment. As it was stated, Packer has a high number of failures, while a great part is 

exclusively associated with issues in the machine itself. Therefore, considering that in a given moment 

it takes place a stop outside the of the area studied (𝒚 = 𝟎) and 2 minutes later a target stop (𝒚 = 𝟏) 

occurs.  

If we consider the calculation of the variables, it is likely that they present the same set of variables or a 

really close one, thus inducing the algorithm to make a misclassification of the first stop. As these stops 

(𝒚 = 𝟎) are not the goal engaged in the current problem, more importance was provided to the job of 

limiting the FDR value. This indicator presupposes an outstanding classification of the True Positives 

(𝒚 = 𝟏). To address this obstacle, it was excluded from the feedstock data, entries that were not 

separated by a 15 minutes time window (the average duration of Buffer course). 

Accordingly to the best practices defined in the application of artificial intelligence for similar problems, 

it is essential to standardize the data that is inputted to the algorithm, for the reason that machine 

learning estimators are likely to be inaccurate if the variables are not standard normally distributed data. 

In the ideal case, each individual feature should present a Gaussian distribution with zero mean and 

unit variance. The process of data standardization is made with Sci-kit learn processing standard scaler. 

 

4.3.4 Environment Creation 

Bearing in mind the definition of a typical machine learning problem, one may declare that two subsets 

of the feedstock data are required – the training data and the testing data. Both datasets were originated 

from the same distribution in a random way using the train_test_split from sci-kit learn, a simple and 

efficient tool for data mining and data analysis. 

While the primary dataset is essential for the algorithm to learn and adjust to the objective function, the 

second is used to evaluate the performance and tune the model. By looking at the results of 

implementing the estimator to the testing set, it is possible to adjust its hyper-parameters in order to 

provide a more accurate performance.  

Attention must be taken when splitting the data into several subsets as the content of each one should 

be representative of the universe. When dealing with a large amount of data, three subsets can be 

created for training, testing and validating. The last two data sets are both used for quality insurance, 

however, both are important and should be applied when possible. The testing set not only evaluates 

estimator’s performance but also serves as a reference for tuning the model. On the other hand, 

validation data is not used to build the model, providing an unbiased sense of model effectiveness [25]. 

 

 



 

41 

Figure 13 minds the distribution of output variables contained in the splitting of the global universe of 

data. The gradient of colours depicts the flow of data in the modelling process, starting by the data fed 

to the algorithm (training data), then the one necessary to test and adjust hyper-parameters (testing 

data) and later the data used to evaluate the performance of the machine learning model (validating 

data). 

 

 

Figure 13 | Distribution of the global data in training, testing and validating data sets. 

4.4 Classifier Modelling 

Depending on the specific problem, one may affirm that there is usually a right estimator to address its 

necessities. These estimators are part of a wide library of algorithms and typically suite four purposes: 

regression, dimensionality reduction, clustering and classification. Sci-kit learn provides a decision path 

in order to define what algorithm is adequate to the problem. Some classifiers such as SGD and kernel 

approximation are developed to perform better in the case when the number of samples is greater than 

one hundred thousand. Below this threshold, other algorithms are frequently used, from SVC to 

KNeighbors as well as Ensemble Classifiers [26]. The configuration of the decision path followed in the 

selection of the right classifier goes as follows in the figure below. 

 

 

Figure 14 | Decision path followed to the selection of the classifier. 
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As earlier described in the first chapter of the current thesis, Ensemble Classifiers holds a group of 

predictive algorithms developed with the same goal, provide improved generalizability and robustness 

to the estimator. Present in the context of this group is the Extremely Randomized Trees classifier, which 

is descendant of the widely known category of Random Forests. However, in the case of the first 

classifier (ET), the nodes are split by choosing cut-points fully at random reducing the variance induced 

in Random Forests. In addition, ET uses the all learning sample to grow the trees instead of a bootstrap 

replica [27]. 

 

Table 7 | Parameters defined for the Extremely Randomized Trees classifier. 

Parameter Description Value 

𝒏_𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓𝒔 

 

The number of trees in the forest 

 

100 

𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 Function measuring the quality of a split Gini 

𝒎𝒂𝒙_𝒅𝒆𝒑𝒕𝒉 Maximum depth of the trees 100 

𝒎𝒊𝒏_𝒔𝒂𝒎𝒑𝒍𝒆_𝒔𝒑𝒍𝒊𝒕 Minimum number of samples necessary to split a node 3 

𝒎𝒊𝒏_𝒔𝒂𝒎𝒑𝒍𝒆𝒔_𝒍𝒆𝒂𝒇 Minimum number of samples in a leaf node 1 

 

The table above provides detail on the parameters tuned for the testing data set, other parameters for 

ET classifier that are not present in Table 7 were left as default.  
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Chapter 5 

Evaluation of Results 

5 Evaluation of Results 

 

In the previous chapter, it was endorsed the evaluation strategy. Composed by a set of metrics, the 

approach used considers two different perspectives: Data Science (section 5.1) and Operational 

(section 5.2). The point of view described in the first concept takes into account the standard evaluation 

practices in a machine learning problem. On the other hand, the second perspective, groups the results 

and contextualizes them in the manufacturing industry environment, completing the global evaluation 

process. An effort was made to offer on both perspectives a detailed description and examination that 

could allow to entirely understand the relation between the algorithm behaviour and the respective 

outputs. 

It is important to bear in mind that the evaluation results are referred to the employment of the validation 

data set. This subset of the global data was not used in the construction of the model and, for this 

reason, is the appropriate structure of information to test the performance of the algorithm. 
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5.1 Data Science Perspective 

Machine learning estimators are often complex and require a great effort in order to understand how the 

prediction is made and what is behind the applied algorithm. On the other hand, in the Data Science 

environment, there is a set of performance indicators having a wide range of applications. In the current 

hypothesis, it is essential to generate insights on the behaviour of the machines and for this reason the 

metrics chosen to evaluate the performance of the algorithm have to ensure the effective transposition 

to the operational context. 

To fully understand the evaluation strategy, the concept of probability threshold must be taken into 

account. In a simple binary classification (1 or 0) the classifier estimates the probability of the output 

variable being one of the classes considering the respective features. By default, if the probability of 

attributing class 1 is greater than 50 % (𝑃(𝒚 = 1) > 0.5), then the algorithm associates the output 

variable to the respective class.  

However, it is important to contextualize the performance of the algorithm given its application, because 

in some cases, the machine learning method could be stricter or softer when attributing a class 

depending on the threshold, respectively if its value is higher than 0.5 or lower. In most applications, the 

performance indicators test the algorithm considering a varying threshold from 0 to 1. 

5.1.1 Confusion Matrix 

The most immediate indicator is, without a doubt, the confusion matrix, as it provides an intuitive 

visualization of how the algorithm performed. Based on the already stated concepts of TP, FP, TN and 

FN, the confusion matrix compares the classification done by the algorithm. In other words, the 

confusion matrix displays the differences between the true and predicted classes. For the reasons 

mentioned in the previous chapter, the ET should be evaluated by implementing the validation data set, 

as this structure of information is representative of the universe and it wasn’t used to tune the model by 

adjusting its parameters.  

Figure 15 depicts the results of this application to the validation data set and illustrates the performance 

of the model using a blue colour gradient. In an ideal case, the bottom left and the top right quadrant 

would be white, meaning a zero value of false positives and false negatives. The following matrix was 

provided by considering a threshold that maximizes the algorithm accuracy. As previously mentioned 

the accuracy is the indicator that takes into account all of the components of the confusion matrix, 

justifying its utilization on the development of this representation. 

The defined threshold is represented by the following expression: 

𝑃(𝒚 = 1) > 0.7                                                                               (12) 

Considering this threshold, that makes harder the classification of a target stop, the respective accuracy 

was about 77%. 
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Figure 15 | Normalized and non-normalized confusion matrix referent to the validation data set. 

 

From the above confusion matrix, the indicators referenced in the Evaluation System (section 4.2) given 

by expressions (5) to (9) were determined and are listed in the table below: 

 

Table 8 | Metrics retrieved from the confusion matrix regarding the class of the target stops. 

Metric (Class = 1) Value (%) 

Sensitivity 

 

78.8 

Precision 84.3 

Accuracy 76.9 

F1 Score 81.4 

FDR 15.6 

 

Comparing to other cases where machine learning is applying, the values stated above, offers a sense 

that the model has a considerable positive performance. On the other hand, this statement must be 

completed by analysing the further indicators. 

5.1.2 ROC Curve 

The Receiver Operating Characteristic curve provides a visualization of the classifier performance and 

it is most widely used to select a suitable operating point or decision threshold. The area under the ROC 

curve (AUC) is frequently used as an indicator of the performance for machine learning algorithms. This 

area depicts the ability of the algorithm to distinguish each class, thus a higher AUC means a better 

effectiveness when attributing the respective labels, also known as separability. One of the advantages 

of using the ROC Curve to evaluate one model’s performance is that this indicator does not depend on 

any decision threshold, comparing the evolution of both TPR and FPR from a range of thresholds 

between 0 and 1 [28]. 
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In Figure 16, the respective ROC curve is depicted for the algorithm developed. The diagonal line that 

split the chart represents the curve for a scenario of zero discrimination capacity (AUC of 0.5), meaning 

providing a reference to visually evaluate the distinguish ability of the algorithm tested.  

 

 

Figure 16 | Representation of ROC Curve and respective AUC to evaluate the performance of the 

algorithm when addressing the validating data set. 

 

The value of the AUC referring to the model validation was of 0.84, which can be translated as 84% of 

probability to effectively distinguish between classes. To provide a comparison and contextualize the 

current value, the range of AUC indicator in the prediction of heart disease data ranges from 70% to 

80% [28]. Bearing this in mind and even the shape of the curve, it becomes evident that this indicator 

references the algorithm with a valuable distinguish capacity. 

5.1.3 Precision – Recall Curve 

Aiming to evaluate a machine learning algorithm by simply use the accuracy metric can be misleading. 

A full extent of indicators should be considered in order to test the algorithm robustness under a wider 

range of circumstances. Precision – Recall Curve is often used to address the influence of imperfections 

in data such as skew and unbalance. Algorithms that optimize and prosper in the ROC Curve analysis 

are not guaranteed to perform well under the evaluation of Precision – Recall Curve. On this last 

indicator, Recall is plotted in x-axis while Precision is defined by the y-axis. By definition, Recall is the 

same as TPR. On the other hand, Precision indicated the proportion of positive samples that were 

correctly labelled [29]. 

Depicted in Figure 17 is the Precision – Recall Curve (PR Curve) provided for the developed model. 

Similar to AUC, the average precision indicator (AP) sums up the result of the Curve and thus the 

indicator performance. AP is a weighted mean of the precisions achieved at each threshold. 
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Figure 17 | Representation of Precision – Recall Curve and respective AP to evaluate the performance 

of the algorithm when addressing the validating data set. 

 

The area under the PR Curve is as well an important representation of the performance of the algorithm, 

the higher the area, most effective is the classification. However, in PR AUC, the true negatives are not 

considered, as they are not part of either Precision or Recall. 

By interpreting the representation above, it is clear the presence of a substantial area under the PR 

Curve. This area shows how well the algorithm performed on the validation data set, minding its true 

positives. In the current thesis, the PR Curve is a fundamental metric as its more important to analyse 

the effectiveness of the algorithm when correctly classifying the positive class, as it represents the 

identification of the target stops. An average precision (AP) value of 90% detailed in expression (13) 

provides a solid score as this the metric confronts the true positives with the false positives, represented 

by expression (6).  

𝐴𝑃 =  ∑(𝑅𝑛 − 𝑅𝑛−1). 𝑃𝑛                                                                       
𝑛

(13) 

 

5.1.4 TPR – FDR Curve 

The evaluating metrics stated above are general and widely applied in the context of machine learning. 

Nonetheless, it is fundamental to address the specific problem and provide a clear insight from the Data 

Science perspective on how the model performed in the operational environment. In the manufacturing 

industry, it is crucial to be effective and simple when addressing a problem. 
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For this reason, the False Discovery Rate is a powerful indicator as it represents the proportion of false 

positives identified in a real context. Depending on the environment, the number of FDR must be 

adjusted and optimized to address the problem needs. For instance, having 15 false discoveries (also 

known as false alarms) in a total of 100 discoveries it might be or not too costly. 

 

Figure 18 | Representation of TPR – FDR Curve to evaluate the performance of the algorithm when 

addressing the validating data set. Identification of ideal operating area. 

 

Aiming to analyse the effectiveness of the algorithm in the operational environment, it is essential to 

bear in mind the TPR – FDR Curve depicted in Figure 18. This curve calculates the respective values 

of TPR (y-axis) and FDR (x-axis) for a sequential set of thresholds between 0 and 1. The relevancy of 

the current analysis minds the fact of having a higher FDR might be costly or implying considerable 

effort depending on the situation. Therefore, a balance between the two indicators must be taken by 

identifying the optimal operation point in the TPR – FDR Curve. In the manufacturing industry, this 

optimal point is often located in the green area illustrated in the representation above. This area 

comprises all thresholds that offer a maximum FDR value of 10%.  

Transposing to the context approached in the present thesis, a value of 10% in FDR consequently refers 

68% of TPR. In a real operational environment, an alarm that buzzes every time the algorithm classifies 

a positive value would have anticipated 68% of all target stops providing within the total number of 

buzzes a 10% rate of false alarms. Bearing this in mind, the TPR – FDR optimal point should be adjusted 

considering a cost – benefit analysis. In similar problems the FDR is adjusted to be lower than 10%, 

implying necessarily a penalty in the true positive rate. Comparing the performance of the developed 

model, with other similar ones in the manufacturing industry the represented curve shows an exceptional 

performance considering the inputs available and the problem constraints.  
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5.2 Operational Perspective 

The results of any solution are not completely described unless some contextuality and relation to the 

problem is provided. Bearing in mind the need stated above and the operational metrics earlier describe, 

the following alignment presents the effects of the algorithm predictions considering a threshold of 0.78 

correspondent of a 10% rate of false discoveries. 

5.2.1 Reduction of target stops 

One of the most immediate results is the number of the target stops correctly predicted. Associated 

with this threshold there is a TPR of 68% meaning the proportion of effective failures classified as true 

positives. However, it is essential to consider that the prediction is merely indicative providing only the 

knowledge of when the stop is expected to occur. In order to reduce the blockages in the target area, 

is necessary an action from the operators, which can be not successful in a portion of the times. 

The figure below provides an illustration of the application of the developed estimator to the historical 

data. It was built by considering that 68% of the blockages are correctly predicted in a random way. This 

estimation was made by randomly discarding the downtime involved in 68% of the target stops while 

excluding from the global downtime the effects of breakdowns, planned stops, and the long process 

stops. 

 

Figure 19 | Illustration of the weekly Packer downtime. Comparison between the historical downtime 

and the minimum downtime by randomly predicting 68% of the target stops.  

However, it should be considered that the algorithm doesn’t reduce the downtime by itself as it requires 

the action of the operators anticipating the blockages. It was considered that in 50% of the cases the 

experienced personnel would be able to effectively by-pass the problem and it was represented (grey 

dashed line) the achievable downtime managed with this circumstance. 
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It is important to retain from Figure 19, that in the first 6 weeks of production the global downtime value 

was not stabilized and that the model was developed and tuned by with data from all the historical. As 

not part of the ambit of the current thesis, another iteration should be taken considering only the stable 

months of production, as they are more representative of the operational contexts and the remain 

periods could be considered as outliers. 

Bearing in the mind the declaration stated above, from the all universe of stops considered in the 

historical data (total of 11211 stops) it is estimated an achievability of avoiding 3225 target stops 

(applying 50% to the TPR for this class that has a total of 9486 stops in the data set). Therefore, the 

calculations regarding the achievable MTBF are contemplated in the following alignment and the table 

summarizing operational data of the packaging machine. 

Table 9 | Summary of stats data from Packer in the historical period considered. 

Uptime (hours) 

 

1257 

Total number of stops 11211 

Historical MTBF (minutes) 6.73 

Historical target stops 9486 

Target stops predicted (threshold = 0.78) 6450 

Achievable Uptime 1317 

Achievable target stops 3225 

 

10. Historical MTBF: 

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑀𝑇𝐵𝐹 =  
𝑈𝑝𝑡𝑖𝑚𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠
= 6.73 𝑚𝑖𝑛𝑢𝑡𝑒𝑠  

11. Achievable MTBF: 

𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑀𝑇𝐵𝐹 =  
𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑈𝑝𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 − 𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑝𝑠
= 9.90 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

12. Increase in MTBF: 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑀𝑇𝐵𝐹 =  
𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑀𝑇𝐵𝐹 − 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑀𝑇𝐵𝐹 

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑀𝑇𝐵𝐹
= 47% 

 

As previously stated, a balance must be made to find the ideal conditions which represent an optimal 

cost – benefit proportion aiming to achieve the model’s full potential. 
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Chapter 6 

Conclusions 

6 Conclusions 

The present thesis studies the behaviour and interdependency existing between to machines in a given 

operational line of a manufacturer. The line is located in the secondary and last part of the global 

production process and, for this reason, the accumulation of imperfections and unwanted peculiarities 

which might have a prejudicial effect on the machines and consequently on the production. It was 

approached the adoption of machine learning techniques aiming to effectively predict the type of failure 

with a larger impact on line’s global downtime, the target stops. 

Knowledge of the experienced personnel was an irrefutable reality providing insights on equipment 

behaviour and its reflection on the data, as well as defining the focus of this study by identifying all the 

constraints involved. This cooperation was essential to generate the set of features used as input for 

the machine learning algorithm. 
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6.1 Discussion 

To address the machine learning problem engaged in the current thesis, two main points were defined 

as targets, which are detailed in the following alignment: 

1. Provide insights on machine behaviour that are understandable and can be transposed to 

operational environment; 

2. Predict target stops based on the production data of the making machine. 

 

Regarding the first goal stated above, it was attained in the stage of data processing and feature 

selection by developing algorithms capable of interpret the data and structure the information in a simple 

and integrated format. Based on statistical theories, it was conceived the Support Matrix tool. Promoted 

by Apriori algorithm and integrated with the logic of the Lookup Windows, this framework provided a set 

of outputs fundamental to recognize patterns in the operation of the system. 

Furthermore, this visualization tool can be adapted to fit many other similar jobs in the manufacturing 

industry. The assumptions that are embedded in the idealization of the Support Matrix are the existence 

of a list of transactions (occurrences) related with one specific item and the concept of time to create 

the list itself. This relation can be expressed by a determined sequence of events or status and will be 

processed in order to identify patterns and logical progressions. In the use case addressed in this thesis, 

the support matrix provided the set of Maker Stop Reasons with stronger relation to Packer’s target 

stops (support above the threshold of 5%). Each stop reason and respective support can be easily 

interpreted by the experienced personnel, aiming to understand the extent of the relations between 

Maker’s production and Packer’s comportment. In addition, the Support Matrix achieved other of the 

main challenges engaged – the combination of two asymmetric data sets.  

The referenced and other challenges accomplished on the study are listed below: 

1. Combine asymmetric data sets; 

2. Retrieve variables from Maker that are relevant to the classification; 

3. Produce a solid range of features from the few available variables; 

4. Properly estimate the influence of Buffer by considering its size; 

5. Determine the right classifier for an effective prediction of the target stops. 

 

The third of the hindrances stated above concerns the fact that the data provided to the algorithm must 

somehow reflect the interdependency existent in the system. Regarding the presented circumstances, 

the contribution of the operators and maintenance personnel was essential to define the features that 

were more representative of the operational reality.  
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A level of uncertainty was introduced by the lack of information regarding the Buffer existent immediately 

upstream the packaging machine. This equipment transports the produced Units from Maker to Packer 

and dilutes the effect of defective Units. As it is unattainable the calculation of Buffer’s instant 

dimensions, it is not possible to determine the amount of time spent by a Unit during this course. To 

overcome the stated obstacle, the concept of Lookup Tiers was introduced in the data preparation stage. 

Time is seen as a fundamental dimension to be considered in problems of this nature and, in the current 

use case, represents a distinctive factor in feature generation. The Lookup Tiers estimate the delayed 

time of a Unit during the Buffer’s course and were used to calculate the variables for each input, 

considering the difference between the downtime of the packaging and making machines. 

Data was randomly split into three subsets, containing 74%, 6% and 20% of the global input data set 

for training, testing and validating, respectively. Further, an ensemble classifier was selected as an 

appropriate estimator to handle problems of this category. The classifier that best fitted this purpose 

was the Extremely Randomized Trees, proposed by Geurts et al [27]. 

Testing data was applied to tune the model’s hyper-parameters, while the validation data set was used 

to evaluate its performance. This evaluation was carried out by inducing two perspectives, the Data 

Science point of view and the Operational context. In the earlier approach, a confusion matrix was 

represented as well as its dependent indicators were determined. The accuracy for a probabilistic 

threshold of 0.7 was of 77% while the F1 Score rounded 81%. 

Also endorsed in the Data Science perspective the validation data set was tested under the rating of the 

ROC Curve. The visual aspect of the curve allowed to understand the level of separability of the classifier 

while the correspondent area under the curve (AUC) reached 84%. Another typical indicator of the 

performance of an algorithm used in machine learning problems is the Precision – Recall Curve. 

Similarly to the first curve, the PR representation offers a visual insight of how well the model performed, 

however, in this case only the effectiveness to the positive class is evaluated, from both Precision and 

Recall. The Average Precision that followed up this indicator marked the 90%. Both curves characterize 

the algorithm for its robustness and generalization. 

Justified by the context of the problem and the requirements for a low rate of false discoveries, it was 

depicted in the TPR – FDR Curve. Given its constraints, the aim of this representation was to select an 

optimal probabilistic threshold that could minimize the FDR while having a high rate of true positives. 

The threshold of 0.78 allows a FDR lower than 10%, maintaining the TPR at 68%.  

From an Operational perspective, the reduction of target stops is the central objective. However, it is 

important to note that the algorithm only indicates the probability of the occurrence of these blockages 

and could not have a direct impact on machine performance. The aim is to alarm the operator so he can 

prevent the failure. Therefore, the analysis of the effectiveness of the algorithm in the industrial context 

could only be attained by assuming that only 50% of the identified stops could be avoided by the 

operator. The model can successfully process a large amount of information, therefore, the scalability 

of this approach is considered adequate to the problem needs. 
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The value of MTBF is one of the most acceptable indicators for measuring machine performance in the 

manufacturing environment. Considering only the achievable reduction of target stops an increase in 

47% was determined for the historical MTBF of Packer. 

The importance of preparing the data by taking into account the problem context and by receiving 

insights from the experienced personnel is one of the most considerable outputs regarding the 

application of machine learning in an operational environment. 

6.2 Future Work 

The approach followed end-to-end, aimed to provide a complete knowledge of the capabilities of artificial 

intelligence in the industry context. Nonetheless, enhancements should always be considered. 

Considering that the classifier estimative is supported by the data the is used in the learning stage, it is 

fundamental to provide the most valuable information as possible, maximizing the generalization of the 

algorithm. Therefore, as part of further developments, data regarding the properties of Maker’s 

production can be a worthwhile asset. This information minds the quality of the Units being produced 

and serve two essential purposes:  

1. Increases the algorithm performance by maximizing the number of effective classifications and 

reducing the number of false alarms; 

2. Allows the identification of the root cause of the target stops by understanding which 

parameters have a higher impact on the product’s quality. 

Further analysis should be carried in order to identify possible changes that could benefit the work 

environment. With this aim, it should be considered daily standards such as the operators’ location, for 

providing the best line of sight to the most impacting failures - the blockages in the target area. 

In the author’s perspective, the step further should be taken by integrating online data with the concept 

of the Internet of Things applied to machine learning. In this reality, the machine data is retrieved in real 

time and immediately processed by an optimized algorithm. Use cases in the manufacturing industry 

have successfully implemented online integration of machines using artificial intelligence to predict and 

anticipate behaviours. 

The adoption of the suggested approach and the interpretation of its results are vital to prove the integrity 

of this work and contributes to a wider knowledge concerning the predictive maintenance groundwork. 
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